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ABSTRACT

Myeloproliferative neoplasms (MPNs) encompass a heterogeneous group of chronic, clonal haematopoietic stem 
cell neoplasms that harbor the propensity to undergo leukaemic transformation. Epidemiological data on MPNs 
especially pertaining to non-Caucasian populations is limited, and the molecular pathogenesis of MPN remains 
unclear. Although the discovery of MPN driver mutations in JAK2, MPL and CALR in the last decade has revolution-
ised disease management, the mutations are not specific for any MPN subtype. The management of MPNs is further 
challenged by substantial genetic and phenotypic heterogeneity that exist between and within MPN subtypes as well 
as other myeloid diseases. In this review, we focus on the classical Philadelphia chromosome (Ph)-negative MPNs – 
polycythaemia vera (PV), essential thrombocythaemia (ET), and primary myelofibrosis (PMF); providing an overview 
on the current understanding of the disease at a clinical and molecular standpoint while discussing the present chal-
lenges and future opportunities in the management of MPNs.  
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INTRODUCTION

First described by William Dameshek (1) in 
1951 as ‘somewhat  variable manifestations of 
proliferative activity of the bone marrow cells’ 
(p.374), myeloproliferative neoplasms (MPNs) are a 
heterogenous group of chronic, clonal haematopoietic 
disorders with a shared characteristic of cellular 
hyperproliferation. These disorders arise from genetic 
mutations that lead to the constitutive activation of 
signalling pathways responsible for haematopoiesis, 
and the subsequent overexpansion of specific myeloid 
compartments. Current classification guidelines divide 
MPNs into several subtypes, but phenotypic overlaps 
within and between MPN subtypes as well as other 
myeloid disorders are common. Due to the chronic 
nature of MPNs, patients are often asymptomatic upon 
diagnosis. However, the benign myeloproliferation 
masks the ability of the disease to transform into acute 
leukaemia which is often fatal. Despite decades of 
research, understanding of MPN pathogenesis remains 
limited. Notably, chronic myeloid leukaemia (CML) is 

the only MPN with a distinct molecular marker – the 
Philadelphia (Ph) chromosome [t(9;22)] encoding BCR-
ABL1. Targeted monotherapy with tyrosine kinase 
inhibitors has greatly improved survival rates in CML 
(2). However, such success has not been duplicated for 
the remaining MPNs (also known as Ph-negative MPNs). 
In the last decade, breakthrough discoveries of driver 
mutations in JAK2, MPL and CALR in Ph-negative MPNs 
have been made. Nevertheless, no mutation discovered 
thus far is specific for any Ph-negative MPN subtype, 
and therapy is largely aimed at disease control rather 
than cure. This review captures the current clinical and 
molecular landscape of MPN and provides perspectives 
on future opportunities to improve the management of 
the disease. 

POPULATION-BASED STUDIES: LIMITED 
UNDERSTANDING OF THE GLOBAL DISEASE 
BURDEN 

Global epidemiological studies on MPNs remain scarce. 
A 2014 meta-analysis of 28 studies (3) estimated the 
pooled annual incidence rates of ET, PV and PMF at 
1.03, 0.84 and 0.47 cases per 100,000 population (95% 
CI:0.70–1.01, 0.58–1.80 and 0.34–0.65) respectively. 
Peak incidence is around 50 to 70 years of age (ET=50-
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60 years, PV=60 years, and PMF 60-70 years), with 
a slight female predominance in ET, a slight male 
predominance in PV, and an almost equal incidence in 
men and women in PMF (2). However, there is great 
variability in reported incidence rates of ET, PV and PMF 
across different studies, ranging from 0.01–2.8, 0.2–2.3 
and 0.5–1.5 cases per 100,000 population respectively 
(2). This variability may be due to: 1) differences in 
etiology between populations, i.e. environmental, 
lifestyle or familial/ethnic factors, 2) changes in the 
MPN diagnostic criteria since the discovery of the JAK2 
V617F driver mutation, 3) under-reporting of disease 
cases due to the chronic and sometimes asymptomatic 
nature of MPNs, and 4) variation in the management 
of MPN patients and registries between nations (3-6). 
Only a handful of nations have published data on MPN 
population incidence since the 2014 meta-analysis, 
namely the United States, Canada, Norway, Sweden 
and South Korea (7-11). Populations in Asia and Africa 
are the most understudied. Available studies report 
on frequency of single or multiple driver mutations in 
patients with MPN, but not population incidence (12-
18). Due to the limited data, the true global incidence 
of MPN, especially pertaining to non-Caucasian 
populations, remains unknown.

HETEROGENEITY IN SYMPTOMS: DIVERGENCE IN 
CLINICAL OUTCOME

Presenting features of MPN include constitutional 
symptoms such as headache, fatigue, pruritus, facial 
plethora and weight loss, as well as hepatosplenomegaly 
which occurs due to the sequestration of excessive blood 
cells and/or proliferation of abnormal haematopoietic 
progenitor cells (19). In ET and PV, common causes 
of morbidity are thrombosis and ischemia due to an 
increased red cell mass and high platelet numbers that 
lead to the blockage of vessels. Individuals with ET 
may also experience haemorrhage of mucosal surfaces 
(particularly in the gastrointestinal and respiratory 
tracts) due to platelet dysfunction and acquired von 
Willebrand disease. In PMF, about 90% and 50% of 
patients are affected by splenomegaly and hepatomegaly 
respectively, and more than 50% of PMF patients suffer 
from constitutional symptoms (20, 21). However, 
many individuals with MPNs are asymptomatic upon 
diagnosis. The actual proportion of asymptomatic PV 
cases has not been reported, but more than 50% of ET 
cases and as many as 30% of PMF cases have been 
discovered incidentally through routine blood and/or 
physical examinations (2). 

Primary causes of MPN morbidity and mortality are 
thromboembolic and haemorrhagic complications as 
well as disease progression (i.e. into myelofibrosis (MF)) 
or transformation into acute myeloid leukaemia (AML) 
(Fig. 1A) (22). In general, PMF is associated with the 
poorest disease prognosis and outcome, followed by 
PV, and ET is the most indolent of all MPNs (23). For 

PMF, the median survival upon diagnosis is 3 to 5 years 
(24). Around 20% of patients succumb to leukaemic 
progression, and comorbidities such as cardiovascular 
events, infection and bleeding are also common causes 
of death (25). For PV, the 10-year projected survival rate 
is more than 75%, whereas less than 5% and 10% of 
cases undergo leukaemic transformation and fibrotic 
progression respectively (26). For ET, survival rates are 
similar to that of the general population - the 15-year 
survival is around 80% (which can worsen thereafter 
due to thrombosis or haemorrhage), whereas the 10-
year risk of fibrotic or leukaemic transformation is less 
than 1% (23, 27, 28).

MULTIFACTORIAL PATHOGENESIS: GENETICS, 
CELLULAR, MICROENVIRONMENT & OTHER 
FACTORS

The first evidence that MPNs originate from the clonal 
expansion of haematopoietic stem cells (HSCs) upon 
acquiring mutations that confer a selective growth 
advantage that drive the myeloproliferative phenotype 
was recorded in 1976 (30). HSCs are self-renewing, 
multipotent cells located in the bone marrow that can 

Fig. 1: A) Multidirectional transformation of Ph-negative 
MPNs and B) Multifactorial pathogenesis of MPN. (A) Each 
MPN subtype has the potential to result in bone marrow failure 
by progressing to PMF or even AML (2). Adapted from Nanga-
lia et al., 2016 (27). (B) Several factors have been implicated 
in the pathogenesis of MPN. These factors are not necessarily 
exclusive and may exist in combination.
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studies in 2013 (49, 50) discovered an unlikely candidate 
in the form of calreticulin (CALR), which is a chaperone 
protein with no direct role in cell signalling, cell fate 
or even haematopoiesis. All reported CALR mutations 
are frameshifts that are caused by insertions or deletions 
in exon 9; which results in a novel C-terminus of the 
protein. Subsequent studies suggest that mutant CALR 
interacts with MPL to cause constitutive JAK/STAT 
signalling; resulting in MPN phenotypes similar to those 
of MPL mutations (Fig. 2) (51-55).

Of note, the thrombopoietin receptor MPL is selectively 
expressed on HSCs and cells of the megakaryocytic 
lineage (56). Constitutive activation of MPL results 
in increased megakaryopoiesis and a thrombocytosis 
phenotype, in keeping with the observation that MPL 
and CALR driver mutations occur almost exclusively in 
ET and PMF, but not in PV (Fig. 3A) (57). In contrast, 

give rise to all the blood cell lineages. Traditionally, the 
process of haematopoiesis is modelled as a hierarchy 
that begins with HSCs and is followed by intermediate 
progenitor cells that differentiate into fully specialised 
myeloid and lymphoid cells. In MPNs, studies have 
detected the presence of driver mutations in HSCs and 
all mature cell lineages (31-33); supporting the concept 
that MPN pathogenesis originates from cells at the apex 
of the haematopoietic hierarchy (29). However, none of 
the driver mutations identified are MPN subtype-specific, 
nor does the absence of driver mutations exclude 
disease. Each MPN subtype also has the potential to 
progress in a stepwise fashion; culminating in bone 
marrow failure due to MF, ineffective haematopoiesis 
or even transformation into AML (Fig. 1A) (2). As such, 
there is ongoing debate that MPNs should not be treated 
as separate distinct entities, but as a single continuum, 
whereby disease outcome is determined by various 
factors (Fig. 1B). We discuss the different factors in the 
following sections:

i) Driver mutations
Research in the last decade has led to the discovery of 
MPN driver mutations in three genes: JAK2, MPL and 
CALR which are found in more than 95% of PV, ET and 
PMF cases. Similar to the BCR-ABL1 oncogene associated 
with CML, these mutations lead to the constitutive 
activation of cytoplasmic/receptor tyrosine kinases 
in signalling pathways critical for myelopoiesis, such 
as the signal transducer and activator of transcription 
(STAT), mitogen-activated protein kinase (MAPK), and 
phosphatidylinositol-3’-kinase (PI3K) pathways (Fig. 2). 
In 2005, the first and commonest MPN driver mutation, 
JAK2 V617F was discovered (4, 34-36). Found in 95% of 
PV cases and 50-60% of ET and PMF cases, JAK2 V617F 
occurs in exon 14 of JAK2 and results in the constitutive 
activation of the JAK2 tyrosine kinase and JAK/STAT 
signalling; a pathway critical for myelopoiesis (Fig. 2). 
Other JAK2 MPN driver mutations were subsequently 
discovered in JAK2 V617F-negative PV in the form of 
insertions and deletions in JAK2 exon 12 (Fig. 3A) (37, 
38). Studies on MPN patients and mouse models (37, 39, 
40) observed that these JAK2 exon 12 mutations resulted 
in an isolated erythrocytosis phenotype, and therefore 
greater amplification of downstream signalling effects as 
compared to the JAK2 V617F mutation. 

In 2006, two research groups identified JAK/STAT 
activating mutations in the thrombopoietin (TPO) 
receptor gene, MPL (Fig. 2) (42, 43). Mutations in MPL 
are usually substitutions (i.e. MPL W515L and W515K) 
that occur in exon 10 and induce constitutive activation 
of MPL (42-45). A less common mutation, MPL S505N 
results in an activated conformation of the protein (46-
48). Following the discovery of driver mutations in JAK2 
and MPL, other elements of JAK/STAT signalling have 
become the centre of research focus. However, these 
efforts have not resulted in further significant findings. 
Nevertheless, two individual whole-exome sequencing 

Fig. 2: Activation of the thrombopoietin (TPO) receptor MPL. 
(Top) JAK2 binds with the intracellular domain of the inactive 
MPL receptor homodimer. Binding of TPO to the extracellular 
domain of the MPL receptor homodimer induces an “active” 
conformational change that enables transphosphorylation of 
the attached JAK2 molecules. The activated JAK2 molecules 
then phosphorylate tyrosine residues on the intracellular do-
main of the MPL receptor homodimer, which then activate 
downstream signalling pathways such as signal transducer and 
activator of transcription (STAT), phosphatidylinositol-3’-ki-
nase (PI3K) and mitogen-activated protein kinase (MAPK) 
pathways. (Bottom) The JAK2 V617F and exon 12 mutations 
as well as mutations in MPL lead to ligand-independent acti-
vation of downstream signalling pathways. Similarly, mutant 
CALR associates with MPL to result in ligand-independent 
activation of downstream signalling pathways. Information 
sourced from Nangalia et al., 2017 (39).
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the JAK2 tyrosine kinase is expressed ubiquitously on 
cells of all lineages. Although mutations in JAK2 exon 
12 are rare and reported only in PV (37, 38), the JAK2 
V1617F mutation has been observed in a spectrum of 
MPN phenotypes, ranging from asymptomatic PV to 
severe MF (4, 34-36). 

Evidence suggests that variations in JAK2 gene dosage, 
or more specifically, JAK2 V617F allelic burden affects 
the MPN phenotype. Individuals with PV are reported to 
have the highest JAK2 V617F allelic burden, followed 
by individuals with PMF, whereas individuals with ET 
have the lowest JAK2 V617F allelic burden (22). A study 
on MPN patient-derived induced pluripotent stem cells 
found that only JAK2 V617F heterozygous cells produced 
thrombopoietin-independent megakaryocyte colonies, 
suggesting that JAK2 V617F heterozygosity drives 
thrombopoiesis, whereas JAK2 V617F homozygosity 
drives erythropoiesis (59). In JAK2 V617F-positive ET and 
PV, JAK2 V617F homozygosity is associated with higher 
haemoglobin levels and leukocyte counts, incidence of 
aquagenic pruritus and splenomegaly, as well as risk of 
thrombosis and progression to MF (60-62). Similarly, 
studies on transgenic mouse models found that an 
increase in JAK2 V617F expression resulted in a shift in 
MPN phenotype from ET to PV (63, 64), and that JAK2 
V617F-homozygosity resulted in accelerated MF (65). 

ii) Other clonal markers

Despite the discovery of MPN driver mutations in JAK2, 
MPL and CALR, around 10% of patients are “triple-
negative (TN)”; i.e. they do not harbour mutations in any 
of these three genes (Fig. 3A) (48, 57). Clonal markers 
which are generally found across myeloid diseases are 
not only present in TN MPN, but can also be present 
with MPN driver mutations (Fig. 3B) (48, 66, 67). These 
markers include genes involved in: 1) cell signalling 
pathways, i.e. JAK/STAT pathway elements (e.g. SH2B3, 
CBL, KIT, GNAS, GNB1) and RAS pathway elements (e.g. 
KRAS, NRAS, NF1, PTPN11); 2) epigenetic regulation i.e. 
TET2, IDH1 and IDH2, DNMT3A, EZH2, ASXL1, CUX1, 
MLL3 and PHF6; 3) regulation of the cell cycle and/or 
apoptosis i.e. BCOR, PPM1D, RB1, STAG2 and TP53; 4) 
regulation of gene transcription i.e. GATA2, NFE2, and 
RUNX1; and 5) mRNA processing i.e. U2AF1, ZRSR2, 
SF3B1, and SRSF2. Although the roles of such clonal 
markers in MPN pathogenesis are less understood, each 
clonal marker is correlated with changes in the MPN 
phenotype. For example, mutations in mRNA processing 
elements and epigenetic regulators are associated with 
an MF phenotype, leukaemic transformation and poor 
survival in MPNs (29, 68, 69). As such, clonal markers 
are important prognostic factors and have since been 
incorporated as additional diagnostic criterion for MPNs 
(2, 41, 58, 70).

iii) Germline predisposition
Genetic variants linked to an increased MPN 
predisposition have also been identified. According 
to Nangalia et al. (41), such variants can be classified 
into two groups: 1) common variants in populations 
that mildly increase MPN predisposition, and 2) 
rare variants in pedigrees that demonstrate higher 
penetrance of specific alleles. Common variants 
include the JAK2 46/1 (GGCC) haplotype as well as 
single nucleotide polymorphisms (SNPs) present in or 
close to TERT (rs2736100) and MECOM (rs2201862), 
which in combination are estimated to account for 55% 
of population attributable risk (71-74). Rare variants 
include mutations in RBBP6 (found to affect the p53 
apoptotic pathway and increase the risk of developing 
further mutations) (75), as well as a duplication of 
14q32.2 (associated with the overexpression of ATG2B 
and GSKIP) and the SNP rs9376092 in the intergenic 
region between HBS1L and MYB (HBS1L-MYB), both of 
which promote megakaryopoiesis and the development 
of an ET phenotype (73, 76). Other novel variants in JAK2 
and MPL have also been identified in TN ET and MF 
patients, most of which were germline than somatic (48, 
67). MPN predisposition loci in TERT, SH2B3, GF11B, 
ATM, CHEK2, and TET2 have also been reported (77). 

iv) Order of mutation acquisition
As MPNs are clonally heterogenous, differences in the 
order of mutation acquisition and clonal architecture 
can contribute to differences in MPN phenotype and 
prognosis between individuals. Studies on JAK2-
mutated MPN patients with TET2 (78) and DNMT3A 

Fig. 3: Relative frequencies of (A) JAK2, MPL and CALR driv-
er mutations and (B) other clonal marker mutations in ET, PV 
and PMF.  (A) The most prevalent driver mutation in MPNs is 
the JAK2 V617F mutation, followed by CALR and MPL muta-
tions. The latter two gene mutations are found primarily in ET 
and PMF. A proportion of MPN cases are TN. (B) Mutations in 
other clonal marker genes are not only identified in TN MPNs, 
but are also found in the presence of driver mutations. Data 
compiled from Tefferi et al., 2017 and Grinfeld et al., 2017 
(54, 55). TN, Triple-negative.
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HSCs than normal HSC (104). The aberrant production 
of cytokines by malignant HSCs has been found to cause 
neural damage, fibrosis, and increased microvessel 
density in the bone marrow (105-108). In addition, 
studies reporting the development of human PMF 
features in mice MF-xenografts, i.e. constitutive cellular 
mobilization into the peripheral blood, splenomegaly, 
and leukaemic transformation suggest that normal HSCs 
can be affected by cytokine signals from malignant HSCs 
(109, 110). Interestingly, there is considerable overlap 
between the cytokine profiles of PV, ET and PMF, thus 
supporting the idea that the diseases belong to the same 
biological spectrum (111, 112).

vii) Other factors 
Aging is the primary risk factor for MPN development. 
Mutations that lead to clonal haematopoiesis of 
indeterminate potential (CHIP) in genes such as ASXL1, 
DNMT3A, SF3B1, SRSF2 and TET2 are rare in individuals 
below the age of 40 but increase exponentially in elderly 
individuals (41, 113). Studies on HSCs found that aged 
HSCs have reduced lymphoid potential that results in 
a myeloid-bias, as well as decreased self-renewal and 
marrow-homing ability as compared to young HSCs 
(114-117). Gene expression profiling of aged HSCs 
revealed an overall increase in transcription with a 
loss of transcriptional regulation; the systemic down-
regulation of genes involved in mediating lymphoid 
potential, chromatin remodelling and the preservation of 
genomic integrity; as well as the up-regulation of genes 
involved in mediating myeloid potential, leukaemic 
transformation, stress response, inflammation, and 
protein aggregation (114, 115, 118). 

Aside from age, other factors such as gender or even the 
microbiome has been associated with changes in MPN 
phenotype. PV is reported to be more common in males, 
whereas ET is more common in females (2). Although 
JAK2 V617F homozygosity is reported to occur equally 
in both genders, it is associated with PV in males but 
ET in females (61). Therefore, it is possible that male 
androgens affect the expansion of homozygous JAK2 
V617F subclones that result in a phenotypic skew towards 
PV, whereas female estrogens combined with iron 
deficiency (which impedes erythropoiesis and promotes 
thrombopoiesis) in pre-menopausal women result in a 
phenotypic skew towards ET (29). Other erythropoiesis-
constraining conditions such as thalassemia or low 
erythropoietin levels may also lead to ET rather than PV 
(119). Moreover, studies on the role of the microbiota in 
haematological diseases suggest that the disruption in 
the normal gut microbiota is associated with clinically 
significant outcomes; whereby some pathogens are 
associated with disease initiation (120). 

THE EVOLUTION OF MPN DISEASE CLASSIFICATION

The classification of MPNs has evolved with each 
new discovery. According to the World Health 

(79) mutations found that those who are JAK2-first have 
larger homozygous JAK2-mutated subclones as well 
as ‘double-mutant’ subclones (with TET2 or DNMT3A 
mutations) and often present with PV, whereas patients 
who are TET2-first or DNMT3A-first have a dominant 
‘single mutant’ subclone (with mutated TET2 or 
DNMT3A only) and often present with ET. Nangalia 
et al. (41) proposed three mechanisms that may drive 
the differences between different patterns of mutation 
acquisition, i.e., the first mutation may alter 1) the 
response of a HSC to the second mutation, 2) HSC 
differentiation, resulting in altered progeny populations 
in which the second mutation can arise, and 3) the 
number and function of mature progeny, therefore 
affecting the bone marrow environment. 

v) Haematopoietic stem cells (HSCs) 
HSCs are traditionally understood as a relatively 
homogenous population of cells with equal regenerative 
capacity and multipotency. However, tremendous 
molecular and functional heterogeneity has recently 
been revealed within the HSC population (80). HSC 
transplant experiments in mice (81-84) found that 
only a small proportion of HSCs were ‘balanced’ and 
produced a roughly equivalent multi-lineage output, 
whereas the majority of HSCs were ‘biased’ towards 
the production of certain lineages (80). To date, 
lymphoid-, myeloid- and platelet-biased HSCs have 
been characterised (81-90). Although direct evidence is 
lacking, Mead et al. (91) hypothesised that HSC lineage 
bias may contribute to MPN phenotypic heterogeneity 
by facilitating more direct pathways of haematopoiesis, 
i.e. an MPN driver mutation which occurs in a platelet-
biased HSC may promote an ET phenotype, whereas 
the same driver mutation which occurs in a myeloid-
biased HSC may promote a PV phenotype. A 2014 
study observed the expansion of myeloid-restricted 
progenitor cells originating from single malignant HSCs 
that were reconstituted in transgenic mice, providing 
further supporting evidence to support the lineage-bias 
hypothesis (92). 

vi) Bone marrow microenvironment
The behaviour of HSCs is not only determined by 
their intrinsic properties, but also by extrinsic factors 
in the bone marrow microenvironment. Bone marrow 
components, such as endothelial cells, osteoblasts, 
osteoclasts, and stromal cells secrete signalling 
molecules that are essential for the regulation of normal 
HSC function, but also play an essential role in MPN 
pathogenesis. Several in vivo studies (93-96) have 
provided evidence that the disruption of the bone 
marrow niche can result in an MPN phenotype. Bone 
marrow stromal cytokines have been associated with the 
proliferation of malignant MPN clones or the inhibition 
of the growth of normal clones (97-103). Moreover, 
expansion of the malignant clone also releases cytokines 
that create a malignant ‘self-reinforcing’ niche that 
favors the survival and proliferation of malignant MPN 
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Organization (WHO) (2), accurate definition of 
disease entities requires an integrated, multimodal 
approach involving the evaluation of clinical features, 
morphology, immunophenotype, cytogenetics, as 
well as molecular genetics. However, prior to the 
discovery of MPN driver mutations, MPN (then known 
as chronic myeloproliferative disorders) classification 
by the WHO was based on then available research by 
the Polycythaemia Vera Study Group and was heavily 
reliant on morphological analysis (121, 122). Several 
important revisions have since been made to the WHO 
MPN classification guidelines. The latest 2016 revision 
to the WHO classification include: 1) testing for the 
presence of driver mutations or other clonal markers as 
diagnostic criterion for PV, ET or PMF, 2)  decreasing of 
the platelet count and hemoglobin level threshold for the 
diagnosis of ET and PV respectively, 3) clear definition 
of minor diagnostic criteria that may impact the accurate 
diagnosis and prognosis of prefibrotic PMF, and last but 
not least, 4) standardization of morphologic criteria and 
emphasis on histologic diagnosis, i.e. the requirement for 
a bone marrow biopsy for the classification of any MPN 
subtype (2, 28, 123-125). Like any disease, accurate 
diagnosis of an MPN subtype is critical for predicting 
disease prognosis and determining the choice of therapy 
for the best outcome. 

DISEASE MANAGEMENT: PROGRESS MADE BUT 
MUCH TO BE DESIRED

Based on the latest WHO classification guidelines, a 
typical diagnostic workflow incorporates molecular 
testing for MPN driver mutations and a bone marrow 
aspirate and/or trephine biopsy which is correlated 
with the results of a full blood count (Fig. 4). In order to 
exclude CML, molecular testing for BCR-ABL1 is usually 
conducted as a preliminary test. Erythropoietin assays 
and lactase dehydrogenase (LDH) assays may also be 
required to confirm an MPN diagnosis, whereas other 
tests may be required to disassociate comorbidities 
from the presenting symptoms such as anaemia and 
thrombocytosis. Clinical therapeutic decisions may 
be then guided using prognostic models such as the 
International Prognostic Scoring System (IPSS) and 
the Dynamic IPSS (DIPSS) which group patients into 
categories (i.e. high-, intermediate-, and low-risk groups) 
based on factors such as age, blood cell count, driver 
mutations, and previous history of thrombosis (126, 
127). 

However, substantial heterogeneity in phenotype and 
genotype between and within MPN categories, and even 
other myeloid disorders pose a significant challenge 
towards MPN management. Certain mutations may 
be more prevalent in one subtype as compared to the 
other (e.g. JAK2 V617F occurs in >90% of PV cases as 
compared to 50-60% of ET and PMF cases), but none 
are exclusive to any single MPN subtype. Mutations 
in JAK2, CALR or MPL can also be present in other 

haematological malignancies such as myelodysplastic 
syndromes (MDSs), myelodysplastic/myeloproliferative 
neoplasms (MDS/MPNs), and acute myeloid leukaemia 
(AML) (2, 125). Clinical features of MPNs such as bone 
marrow fibrosis or haematocrit levels are continuous 
variables that are fundamentally challenging to assign to 
individual MPN entities (128). Morphological features 
used for diagnosis, such as the degree of bone marrow 
fibrosis, are based on subjective interpretation and 
prone to high inter-observer variability (129-131). One 
multicentre study that compared the grading of reticulin 
fibrosis between local pathologists and an expert panel 
found that the agreement rate was only 56% (132). 
Hence, the management of MPNs may be improved 
with a novel classification method such as one that is 
based on genomics, that does not rely on continuous 
variables for assigning disease categories.

Therapeutic decisions are made based on the disease 
burden, prognosis and mutational landscape for each 
individual patient throughout their course of disease. 
For patients with ET or PV, the risk of thrombosis, 
haemorrhage, and evolution to PMF and AML (and 
less commonly MDS) is relatively high. In comparison, 
almost all patients with PMF develop anaemia and have 
a higher incidence of splenomegaly, greater symptom 
burden and poorer survival (133). To date, allogeneic 
stem cell transplantation remains the only curative 
option for MPNs (91). However, the procedure is usually 
not considered due to age-related co-morbidities and 
high transplant-related mortality (134). Hence, the goal 
of MPN therapy is to reduce symptom burden, risk of 
thrombohaemorrhagic complications, as well as the risk 

Fig. 4: Example of a clinical molecular diagnostic workflow 
for MPNs that incorporates molecular tests for driver mu-
tations. Due to the relatively high frequency of JAK2 V617F 
mutations in MPNs, JAK2 V617F testing is the primary step in 
MPN confirmatory diagnostics. Current practices do not ne-
cessitate further molecular tests upon a positive JAK2 V617F 
result (27).
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of disease progression and malignant transformation. 
Treatment options include phlebotomy, hydroxyurea 
(HU), aspirin, anagrelide, pegylated interferons that 
target HSCs, and JAK inhibitors such as ruxolitinib (135, 
136). 

Ruxolitinib became the first and only JAK inhibitor to be 
approved for MPN therapy, specifically for intermediate/
high-risk PMF and HU-resistant/intolerant PV after the 
COMFORT I and II trials as well as the RESPONSE trial 
(137-140). The benefits of ruxolitinib therapy such 
as marked symptom reduction has spurred efforts to 
investigate the use of ruxolitinib in ET and high-risk PV 
(141, 142). However, ruxolitinib therapy has limited 
ability in inducing complete molecular remission and 
regression of bone marrow fibrosis (143-145). Moreover, 
the inhibition of JAK2 results in on-target anaemia and 
thrombocytopenia, which hinders dose-optimisation 
of ruxolitinib especially for PMF patients with severe 
thrombocytopenia (146). As such, a variety of novel 
agents are still being investigated for use in MPN therapy, 
whether alone or in combination with already-approved 
therapeutic agents such as ruxolitinib. These include 
various agents such as sotatercept (an anti-anaemia 
agent), anti-fibrotic agents, apoptosis-inducing agents, 
hypomethylating agents and BCL-2-homology domain 
3 (BH3)-mimetics, along with inhibitors of human 
double minute 2 (HDM2), histone deacetylase (HDAC), 
telomerase, cyclin-dependent kinase (CDK), the PI3K 
pathway, and Hedgehog signalling, as well as other JAK 
inhibitors (146). However, none are close to regulatory 
approval and many studies have been discontinued due 
to toxicity concerns (142, 146).

PRECISION MEDICINE: ROLE OF GENOMIC 
CLASSIFICATION AND PREDICTION MODELS

As previously described, MPN disease management is 
challenged by the heterogeneity within and between 
MPN subtypes. Nevertheless, this challenge can be 
overcome by shifting away from a classification scheme 
that is dependent on clinical and morphological 
observation, to one that is based on genomics (147). 
In a recently developed prognostic model (127), 2035 
patients with ET, PV and PMF were stratified into eight 
genomic groups: 1) MPN with TP53 disruption or 
aneuploidy, 2) MPN with chromatin or spliceosome 
mutation, 3) MPN with CALR mutation, 4) MPN with 
MPL mutation, 5) MPN with homozygous JAK2 or NFE2 
mutation, 6) MPN with heterozygous JAK2 mutation, 
7) myeloproliferation with other driver mutation, and 
8) myeloproliferation with no known driver mutation. 
Compared to current prognostic schemas such as 
the IPSS, DIPSS, and International Prognostic Score 
for ET (IPSET), the novel prognostic model showed 
superiority in performance and revealed substantial 
heterogeneity in the disease outcomes within current 
prognostic categories, especially within categories of 
“intermediate-risk” (127). However, the implementation 

of such a genomic prognostic model into the global 
clinical setting will require further validation studies, 
as well as the widespread adoption of comprehensive 
genetic profiling such as next-generation sequencing 
(NGS) technology in clinics worldwide. 

A variety of myeloid NGS panels are currently available 
commercially – most are amplicon-based for short 
turnaround time and target anywhere from 20 to 50 
myeloid neoplasm-associated genes with important 
prognostic information (148, 149). However, several 
challenges accompany the implementation of NGS into 
routine clinical diagnostics of myeloid malignancies. The 
first challenge is the ability to differentiate leukaemia-
associated mutations from polymorphisms, passenger 
mutations and CHIP; requiring robust bioinformatics 
tools and large population datasets (148, 150). Next 
are the technical challenges associated with the NGS 
platform. Frequently, it is challenging to discriminate 
true genetic alterations from artefacts that may arise 
throughout the NGS workflow (151-153). Although 
Sanger sequencing is usually employed to validate NGS 
sequences, the Sanger technique has lower sensitivity 
(detection limit of around 15 to 20%) as compared to 
NGS (detection limit as low as 1%), making it unsuitable 
for the detection of low allele fractions (154). The setting 
up of the NGS platform in a clinical laboratory is also 
associated with high instrument cost and requires an 
interdisciplinary approach that involves constant 
interaction between clinicians, laboratory scientists 
and technicians that are well-experienced in NGS 
(148). Although the price of NGS panels will continue 
to decrease, the cost of purchasing and maintaining 
sequencing equipment remains high. The NGS workflow 
itself, which encompasses the initial panel design to the 
analysis and interpretation of results, is also technically 
tedious and time-consuming. Nonetheless, clinical 
laboratories currently employ traditional molecular 
techniques in parallel with NGS in order to provide 
results that will inform patient therapy at the earliest 
possible time point.

CONCLUSION

Although substantial progress has been made in the field 
of MPNs, there remains gaps that hamper our complete 
understanding of MPNs. Ongoing efforts to investigate 
the role of various factors in MPN pathogenesis will 
hopefully take us closer to this reality. In this era of 
genomics and targeted therapy, genetic screenings of 
patients with myeloid malignancies such as MPNs are 
becoming increasingly accessible and routine. The 
success of the JAK inhibitor ruxolitinib in the treatment 
of MPN patients provides hope that other agents can be 
equally developed as targeted therapies for individuals 
who test positive for other molecular markers. As such, 
a classification scheme that is based on genomics has 
the potential to better inform management decisions. 
Nevertheless, there is a severe lack of data especially 
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for populations outside of Europe and North America. 
More studies are required in order to reduce population-
specific bias and improve the understanding of the 
disease burden of MPNs in non-Caucasian populations. 
In addition, better experimental models, both in vivo 
or in vitro should be developed to investigate the effect 
of single or a combination of various MPN-associated 
mutations on disease progression, and to overcome the 
challenges of genotypic and phenotypic heterogeneity 
in the management of MPN. Lastly, the setting-up of 
molecular diagnostic laboratories and mainstreaming 
of genetic screening practices, such as the adoption of 
NGS technology in clinics worldwide will enable the 
provision of state-of-the-art diagnostics and prognostics 
to patients in a cheap, fast and accessible manner, and 
at the same time improve patient outcomes in the long 
run. 
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