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Abstract
Background: Deformable registration is required to generate a time-integrated
activity (TIA) map which is essential for voxel-based dosimetry. The conven-
tional iterative registration algorithm using anatomical images (e.g., computed
tomography (CT)) could result in registration errors in functional images (e.g.,
single photon emission computed tomography (SPECT) or positron emission
tomography (PET)). Various deep learning-based registration tools have been
proposed, but studies specifically focused on the registration of serial hybrid
images were not found.
Purpose: In this study, we introduce CoRX-NET, a novel unsupervised deep
learning network designed for deformable registration of hybrid medical images.
The CoRX-NET structure is based on the Swin-transformer (ST), allowing for
the representation of complex spatial connections in images. Its self -attention
mechanism aids in the effective exchange and integration of information across
diverse image regions. To augment the amalgamation of SPECT and CT
features, cross-stitch layers have been integrated into the network.
Methods: Two different 177 Lu DOTATATE SPECT/CT datasets were acquired
at different medical centers. 22 sets from Seoul National University and 14
sets from Sunway Medical Centre are used for training/internal validation and
external validation respectively.The CoRX-NET architecture builds upon the ST,
enabling the modeling of intricate spatial relationships within images. To further
enhance the fusion of SPECT and CT features, cross-stitch layers have been
incorporated within the network.The network takes a pair of SPECT/CT images
(e.g., fixed and moving images) and generates a deformed SPECT/CT image.
The performance of the network was compared with Elastix and TransMorph
using L1 loss and structural similarity index measure (SSIM) of CT,SSIM of nor-
malized SPECT, and local normalized cross correlation (LNCC) of SPECT as
metrics.The voxel-wise root mean square errors (RMSE) of TIA were compared
among the different methods.
Results: The ablation study revealed that cross-stitch layers improved
SPECT/CT registration performance. The cross-stitch layers notably enhance
SSIM (internal validation: 0.9614 vs. 0.9653, external validation: 0.9159 vs.
0.9189) and LNCC of normalized SPECT images (internal validation:0.7512 vs.
0.7670, external validation: 0.8027 vs. 0.8027). CoRX-NET with the cross-
stitch layer achieved superior performance metrics compared to Elastix and
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2 DEEP-LEARNING BASED SPECT/CT REGISTRATION

TransMorph, except for CT SSIM in the external dataset. When qualitatively
analyzed for both internal and external validation cases, CoRX-NET consis-
tently demonstrated superior SPECT registration results. In addition,CoRX-NET
accomplished SPECT/CT image registration in less than 6 s, whereas Elastix
required approximately 50 s using the same PC’s CPU. When employing
CoRX-NET, it was observed that the voxel-wise RMSE values for TIA were
approximately 27% lower for the kidney and 33% lower for the tumor, compared
to when Elastix was used.
Conclusion: This study represents a major advancement in achieving precise
SPECT/CT registration using an unsupervised deep learning network. It outper-
forms conventional methods like Elastix and TransMorph,reducing uncertainties
in TIA maps for more accurate dose assessments.

KEYWORDS
177Lu-DOTATATE, deep learning, deformable registration, SPECT/CT, voxel-based dosimetry

1 INTRODUCTION

Peptide receptor radionuclide therapy (PRRT) with
177Lu-octreotate (i.e., 177Lu-DOTATATE) is a prominent
therapeutic option for neuroendocrine tumors (NETs)
exhibiting somatostatin receptor type-2 positivity.1 After
177Lu-DOTATATE PRRT, retrospective dosimetry is
required to assess absorbed doses to organs at risk
(i.e., kidneys and bone marrow) and dose response for
tumor regions.2–4 In particular,voxel-based dosimetry for
therapeutic radiopharmaceuticals, utilizing quantitative
images, offers the potential for greater accuracy com-
pared to organ-based dosimetry, which fails to account
for morphological variations and tissue heterogeneity.5

The quantitative assessment of radioactivity in voxel-
level can be performed using SPECT, utilizing the
gamma rays emitted with energies of 208 and 113 keV
from 177Lu.Additionally,accurate voxel-based dosimetry
can be conducted by leveraging the density information
obtained sequentially from CT scans.6

The voxel-based dosimetry procedure, while lacking
standardization, typically involves the following steps:
(1) SPECT/CT Hybrid imaging scans: sequential imag-
ing scans are performed at multiple time points. (2)
Image registration: These sequential images are reg-
istered, aligning them accurately. (3) Time-Integrated
Activity (TIA) map generation: A TIA map is generated,
reflecting the cumulative activity over time.(4) Dose map
calculation: Dose maps are computed based on the
TIA data and corresponding CT image. In particular, to
calculate the TIA at the voxel level, it is necessary to
align the SPECT images to ensure spatial consistency
throughout the time series. However, SPECT-SPECT
image registration poses difficulties due to the limited
spatial resolution, absence of anatomical details, noise,
and temporal changes in the distribution of activity over
time. Utilizing SPECT/CT hybrid imaging was advanta-
geous for SPECT registration by employing registration
fields derived from CT-CT registration; however, visual
verification was essential to reduce spatial mismatch.5

It is inherent that errors may arise during TIA fitting if
spatial mismatches persist in SPECT images not only
for organ level, but also for voxel level.7–9

Unfortunately, there is no consensus on the opti-
mal method for image registration between sequential
hybrid image datasets for TIA map generation. Typically,
affine and deformable registration is conducted between
anatomical images (e.g., CT) and these registration
parameters are then applied to functional images (e.g.,
SPECT or PET).The rationale behind this approach lies
in the need for high-resolution anatomical information
for accurate nonlinear image registration. Neverthe-
less, misalignment between anatomical, and functional
images, both acquired sequentially, can result in reg-
istration errors.10,11 Tumor regions, in particular, are
susceptible to registration errors due to the use of non-
contrast low-dose CT for SPECT/CT and PET/CT scans.
Consequently, voxel-level TIA values exhibit consider-
able uncertainty, which is subsequently propagated to
the dose estimation.

Various methods have emerged for nonlinear med-
ical image registration.12–14 Conventional approaches
often employ iterative optimization algorithms but suffer
from slow registration speeds due to extensive compu-
tational demands. In contrast, deep learning networks
have recently gained prominence as an alternative,
thanks to their speed and robustness. Notably, 3D con-
volutional neural networks and 3D U-Net have been
applied for supervised learning in registrations of brain
magnetic resonance imaging (MRI),abdominal MRI,and
pulmonary CT.15–17

Supervised learning, however, necessitates access to
true labels (deformation matrices) for each training data,
which is not always feasible. To address this limitation,
unsupervised learning methods have been introduced
for image registration. These include DIRNet, Voxep-
Morph, and strategies inspired by traditional optical flow
concepts.18–23 Recently, TransMorph, which utilizes the
ST known for its exceptional performance in image pro-
cessing, was proposed for unsupervised medical image
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DEEP-LEARNING BASED SPECT/CT REGISTRATION 3

TABLE 1 177Lu-DOTATATE SPECT/CT image data sets.

SNUH SMC

# of Image sets 22 (Total 82 SPECT/CT) 14 (Total 56 SPECT/CT)

Device GE NM670 Siemens symbia intevo

Protocol 4, 24, 48, 120 h post-injection 0.5, 4, 24, 48 h post-injection

CT image 512 × 512, 161 slices 512 × 512, Variable thickness and slice number

SPECT image 128 × 128, 128 slices (3.87 × 3.87 × 3.87 mm3) 103 × 103, variable slice number (4.88 × 4.88 × 4.88 mm3)

Reconstruction Ordered-Subsets Expectation Maximization (OSEM)
(Attenuation correction (AC), resolution recovery (RR))

Ordered-Subset Conjugate Gradient Minimizer (OSCGM)
(Attenuation correction (AC), scatter correction (SC))

registration.24–26 However, studies specifically focused
on the registration of serial hybrid images were not
found.

In this study, we introduce CoRX-NET, a novel
unsupervised deep learning network designed for
deformable registration of hybrid medical images, such
as SPECT/CT or PET/CT, which is pivotal for voxel-
based dosimetry. The CoRX-NET architecture builds
upon the ST, enabling the modeling of intricate spatial
relationships within images. Its self -attention mech-
anism facilitates efficient information exchange and
integration across different image regions. To fur-
ther enhance the fusion of SPECT and CT features,
cross-stitch layers have been incorporated within the
network.27 In the following sections, we will describe
how we have designed, trained, and evaluated this
new network model for the deformable registration of
177Lu-DOTATATE SPECT/CT images.

2 MATERIALS AND METHODS

2.1 Datasets

This study comprises two different datasets acquired
using different SPECT/CT machines. The brief infor-
mation for two datasets including imaging protocols is
provided in Table 1. The first dataset consists of 22
SPECT/CT image sets obtained from seven patients
who underwent 177Lu-DOTATATE therapy at Seoul
National University Hospital (SNUH,Republic of Korea).
All seven patients were male, with five diagnosed with
rectal NET, one with pancreatic NET, and the remain-
ing one with multiple NETs. The averaged activity of
administered 177Lu-DOTATATE for 22 sets was 6.98
(±1.03) GBq. Among these sets, 17 include sequential
SPECT/CT images obtained at four different time points:
4, 24, 48, and 120 h post-radiopharmaceutical injection.
These images were acquired using the GE NM 670
SPECT/CT system. The remaining five sets consists of
three sequential SPECT/CT images obtained at three
out of four previously mentioned time points. This first
dataset was utilized for network training and internal
validation.

The second dataset comprises 14 SPECT/CT image
sets from 14 patients who received 177Lu-DOTATATE

therapy at Sunway Medical Centre (SMC, Malaysia).
Among the 14 patients, seven were male, and the
remaining seven were female patients. Seven patients
were identified with pancreatic NET, four with rectal NET,
one with duodenal NET,one with renal NET,and one with
sacral paraganglioma. The averaged activity of admin-
istered 177Lu-DOTATATE for 22 sets was 7.96 (±0.35)
GBq. In this case, four sequential SPECT/CT images
were acquired at 0.5, 4, 24, and 48 h after the radiophar-
maceutical injection,utilizing the Siemens Symbia Intevo
SPECT/CT system.This second dataset was utilized for
external validation.

Detail patient demographics for both datasets can be
found in Table S1. Ethical approval was obtained from
the Institutional Review Boards at both SNUH and SMC,
and the study was conducted retrospectively.

2.2 Deep neural networks

The architecture of our proposed unsupervised deep
learning network for deformable registration of hybrid
imaging, which we’ve named CoRX-NET, is shown in
Figure 1. CoRX-NET consists of two parallel stream-
lines, both sharing identical structures. Each of these
streamlines takes two CT or SPECT images as input
(i.e., fixed CT, moving CT, fixed SPECT, and moving
SPECT),and leverages the advantages of ST.24 The net-
work architecture consists of several stages, with each
stage including a set of ST blocks. ST is a kind of hier-
archical vision Transformer, which utilizes the Shifted
Window Multi-Head Self Attention (MSA).The ST blocks
consist of conventional MSA and Shifted Window MSA,
followed by a multi-layer perceptron. Following the final
ST block, continuous up-sampling and a double con-
volution layers are used to resize the images, ensuring
they match the original input size. The structure of each
streamline of CoRX-NET closely resembles the exist-
ing Transmorph, but we have notably adopted shallower
layers and fewer ST blocks, which helps manage the
overall network size more effectively.24 In particular, due
to the necessity of incorporating four images of size
128 × 128 × 128 into the network, the network size was
inevitably set to be relatively small. The depth of layer is
three and number of ST blocks for each layer is two.
The head numbers for MSA for four for the first two
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4 DEEP-LEARNING BASED SPECT/CT REGISTRATION

F IGURE 1 The structure of CoRX-NET.

layers and eight for the last layer. The window size used
for attention mechanism is 4 × 4 × 4. The number
of channels in the first layer is 64, doubled with each
subsequent layer.

In this study, we have introduced cross-stitch layers
following the ST block and the double convolution layer
to facilitate the exchange of information between fea-
tures extracted from CT and SPECT images.27 The
cross-stitch layers were specifically designed to improve
the network performance,especially in tasks that require
cross-modality information analysis.28,29 The cross-
stitch layers combine the features in a weighted manner,
allowing for the effective integration of information
from SPECT and CT images. The cross-stitch layer
propagates the shared features from CT and SPECT
images into the next layer through a learnable linear
combination mechanism, as follows:[

FCT
′

FSPECT
′

]
=
[
𝛼11 𝛼12
𝛼21 𝛼22

] [
FCT

FSPECT

]
(1)

where FCT and FSPECT are the features from CT and
SPECT before propagating to layers. FCT

′ and FSPECT
′

are the features from CT and SPECT after propagating
to layers.𝛼ij are linear coefficient of the cross-stitch layer
learned during training. The learnable linear coefficients
of each cross-stitch layer were trained independently.

2.3 Network training and evaluation

As mentioned earlier, the SNUH dataset was utilized
for network training and internal evaluation. Before the
network training, CT images were resampled to match
the voxel size and image dimension of the SPECT

images, resulting in 128 × 128 × 128 image size with
3.87 × 3.87 × 3.87 mm3 voxel size considering net-
work size and simultaneous SPECT/CT registration. In
contrast to CT images,SPECT images acquired at differ-
ent time points following radiopharmaceutical injection
exhibited varying image intensity level (i.e., count or
Bq/mL). However, SPECT images should have simi-
lar intensity distribution because similarity measures
employed for network training and evaluation, such as
mutual information and normalized cross correlation,
rely on the image intensity. Therefore, the intensity of
each SPECT image was normalized using min-max
normalization. For external validation, SMC SPECT/CT
image sets were also resampled and cropped to align
with the image dimensions of SNUH dataset. How-
ever, SPECT images acquired at 0.5 h post-injection
often exhibited highly concentrated radioactive distribu-
tion in specific organs,such as the bladder. In addition, in
most cases, there was insufficient radiopharmaceutical
accumulation in target tumor region. Applying min-max
normalization in such cases would result in the loss of
radioactivity distribution information outside those con-
centrated areas, rendering it unsuitable for evaluation.
Therefore, the images acquired at 0.5 h post-injection
were excluded from external validation.

After image processing, two SPECT/CT images from
each image set from SNUH dataset were grouped into
image pairs, corresponding to a fixed SPECT/CT image
and a moving SPECT/CT image. Five of 22 sets from
SNUH dataset contain three sequential SPECT/CT
acquired in different time and the remains contain four
sequential SPECT/CT. The image pairs for network
training and evaluation were generated considering
all possible combinations within each set to increase
the number of training datasets. Therefore, 12 pairs
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DEEP-LEARNING BASED SPECT/CT REGISTRATION 5

(calculated as 4P2) were generated from each set of
17, and 6 pairs (calculated as 3P2) were generated
from each set of five. Total 234 image pairs (calculated
as 12×17 + 6×5) were separated to 204 and 30 image
pairs for network training and internal evaluation. To
augment the number of training dataset, we applied
left-right image flipping and ± 5◦ rotation around the
z-axis for training dataset, resulting in total 1224 image
pairs for network training. In case of SMC dataset, all
possible combinations were considered as external val-
idation data sets as in the SNUH datasets. Accordingly,
84 (calculated as 14 × 3P2) image pairs were included
in external validation.

The loss function used for network training was
the energy function employed in conventional image
registration algorithms:

Loss = LCT
sim

(
ICT
F , 𝜙

(
ICT
M

))
+ 𝜆SPECTLSPECT

sim

(
ISPECT
F ,

𝜙
(
ISPECT
M

))
+ 𝜆RegR (𝜙) (2)

where ICT
F , ICT

M , ISPECT
F , and ISPECT

M are fixed CT, mov-
ing CT, fixed SPECT, and moving SPECT, respectively. 𝜙
is the deformation field, generated by CoRX-NET. LCT

sim,
LSPECT

sim , and R(𝜙) are similarity measure for CT, SPECT,
and regularization function of 𝜙, respectively. 𝜆SPECT
and 𝜆Reg are weighting factors for similarity measure for
SPECT and regularization function, respectively.

For LCT
sim, mean squared loss (MSE) between fixed CT

and deformed CT calculated for all points p in image
space Ω was used:

LCT
sim

(
ICT
F , 𝜙

(
ICT
M

))
= MSE

(
ICT
F , 𝜙

(
ICT
M

))
= 1
Ω

∑
p∈Ω

(
ICT
F − 𝜙

(
ICT
M

))2
(3)

For LSPECT
sim , local normalized cross correlation (LNCC)

was used to quantify the similarity between fixed SPECT
and deformed SPECT,where K is local window with size
of 9330:

LSPECT
sim

(
ISPECT
F , 𝜙

(
ISPECT
M

))
= LNCC

(
ISPECT
F , 𝜙

(
ISPECT
M

))
=

∑
p∈K

(∑
p

(
ISPECT
F (p)−ISPECT

F (p)
)(

𝜙(ISPECT
M )(p)−𝜙(ISPECT

M )(p)
))2

[∑
p

(
ISPECT
F (p)−ISPECT

F (p)
)2][∑

p

(
𝜙(ISPECT

M )(p)−𝜙(ISPECT
M )(p))

)2] .
(4)

For R(𝜙), diffusion regularization term was used to
avoid folding artifact, where u(p) is spatial gradients30:

R (𝜙) =
∑
p∈Ω

||∇u (p)||2 (5)

𝜆SPECT and 𝜆Reg are set to 0.1 and 8e−4 respectively
according to our empirical experiments. The AdamW
optimizer was used for the network training and the initial
learning rate was set to 0.01.

2.4 Registration performance
comparison

The registration performance of CoRX-NET was com-
pared with Elastix and TransMorph.14,24 In Elasitx,
deformable registration using the BSpline transform was
performed, with the advanced Mattes mutual informa-
tion similarity metric. To ensure fair comparison with
CoRX-NET, registration was conducted on SPECT/CT
images, each with dimensions of 128 × 128 ×128.
Registration was first performed on CT images, and
the corresponding deformation field was then applied
to SPECT images. A maximum number of iterations
set for registration was 1000. For TransMorph, vanilla
version of TransMorph with 64 channels in the first
layer was used.24 The same loss function, including
weighting factors, as used in CoRX-NET was utilized
for network training, but only CT images were used
as inputs of the TransMorph. For the comparison,
L1 difference and Structural Similarity Index Measure
(SSIM) were calculated for CT images, while SSIM, and
LNCC values were computed for normalized SPECT
images.

2.5 TIA estimation

TIA maps were generated from the registered images
to evaluate the dosimetry accuracy using the external
dataset. 4-h SPECT/CT images were considered as the
fixed images and 24- and 48- h SPECT/CT images
were considered as the moving images. Then the 24-
and 48-h images were registered to 4-h SPECT/CT
images using each method. The mono-exponential
function was used to estimate voxel-wise TIA maps.
Regardless of the registration method used, there were
regions where voxel values monotonically increased
over time or TIA values are excessively high. For these
regions,TIA was calculated using the trapezoidal rule as
follows:

Ã (x, y, z)

=

{
∫
∞

0 e𝜆eff tdt, if 𝜆eff > 𝜆phy∑2

i=0
1

2
(Ai + Ai+1)Δti + ∫

∞

t3
A3e−𝜆phy tdt, if 𝜆eff < 𝜆phy

(6)

where Ai is the voxel-wise activity (A0 = 0) of the i-th
SPECT images acquired at ti, and ∆ti = ti+1-ti. λeff rep-
resents the effective decay factor when fitting with a
mono-exponential function. λphy is the physical decay
factor of 177Lu. The voxel-wise RMSE of curve fitting
were then compared among the different methods. The
voxel-wise TIA was also compared with the organ-based
TIA. In brief, the volumes of interest (VOIs) were delin-
eated on original SPECT/CT images and activity in each
VOI was estimated. Then, mono-exponential fitting or
trapezoidal sum was calculated as Equation (6). This
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6 DEEP-LEARNING BASED SPECT/CT REGISTRATION

comparison provided insights into which method yielded
lower errors in dose assessment.

3 RESULTS

3.1 Overall registration performances

Table 2 compares the registration performance of
Elastix, TransMorph, and CoRX-NET. The ablation study
revealed that the inclusion of cross-stitch layers sig-
nificantly improved SPECT/CT registration. Notably, the
addition of cross-stitch layers resulted in significant
enhancements in SSIM and LNCC for normalized
SPECT images. CT SSIMs were increased from 0.9213
to 0.9320 for internal validation cases and from 0.9531
to 9533 for external validation cases when cross-stitch
layers were embedded. SPECT LNCCs were increased
from 0.7511 to 0.7765 for internal validation cases and
from 0.8363 to 0.8568 for external validation cases.
CoRX-NET with cross-stitch layers achieved the best
metrics, except for CT SSIM in the external dataset.
Elastix showed inferior SPECT registration metrics (i.e.
SPECT SSIMs: 0.9593 for internal and 0.9083 for
external validations, SPECT LNCC: 0.6875 for inter-
nal and 0.7372 for external validations) compared to
CoRX-NET, indicating inaccuracies in conventional iter-
ative SPECT/CT registration. The CoRX-NET with the
cross-stitch layer exhibited the smallest percentage of
non-positive Jacobian determinant, indicating the small-
est occurrence of folding artifacts. The conventional
Elastix showed relatively high ratio of non-positive Jaco-
bian determinant (7.56% and 5.75 % for internal and
external validations respectively) compared to the deep-
learning based approaches (< 1 % for any validations
with TransMorph and CoRX-NET). Furthermore, CoRX-
NET outperformed TransMorph, despite TransMorph
having more than twice the number of parameters.
Remarkably, CoRX-NET completed SPECT/CT image
registration in under 6 s,while Elastix took approximately
50 s on the same PC’s CPU.

3.2 Internal validations

The registration results for an internal validation case
(a 54-year-old male patient with rectal neuroendocrine
tumor [NET] and liver metastasis) in the coronal and
axial views are presented in Figures 2 and 3, respec-
tively. The figure shows registered SPECT/CT images
in coronal and axial views, along with correspond-
ing RGB (Red-Green-Blue)-scaled absolute normalized
deformation fields and deformed grids. In the deforma-
tion fields, the red, green, and blue scales represent
the extent of deformation along the x, y, and z axes,
respectively. Conventional Elastix enabled robust CT
registration but often resulted in deficiencies, especially T

A
B

L
E

2
Q

ua
nt

ita
tiv

e
ev

al
ua

tio
n

re
su

lts
of

no
nl

in
ea

r
re

gi
st

ra
tio

n
fo

r
in

te
rn

al
an

d
ex

te
rn

al
va

lid
at

io
n

us
in

g
E

la
tix

,T
ra

ns
M

or
ph

,a
nd

C
oR

X
.

C
T

L
1

lo
ss

C
T

S
S

IM
S

P
E

C
T

S
S

IM
S

P
E

C
T

L
N

C
C

%
o

f
Ja

co
b

ia
n

(p
i)
<

0
#

o
f

P
ar

am
et

er

E
la

st
ix

In
te

rn
al

0.
01

30
(±

0.
01

30
)

0.
91

88
(±

0.
01

28
)

0.
95

93
(±

0.
01

38
)

0.
68

75
(±

0.
09

27
)

7.
56

(±
0.

96
93

)
N

/A

E
xt

er
na

l
0.

02
47

(±
0.

02
53

)
0.

95
85

(±
0.

01
61

)
0.

90
83

(±
0.

05
93

)
0.

73
72

(±
0.

15
78

)
5.

75
(±

2.
27

)

Tr
an

sM
or

ph
In

te
rn

al
0.

00
96

(±
0.

00
08

)
0.

91
28

(±
0.

01
59

)
0.

95
21

(±
0.

01
34

)
0.

59
99

(±
0.

11
58

)
0.

03
48

(±
0.

02
39

)
20

,8
00

,5
63

E
xt

er
na

l
0.

02
41

(±
0.

00
50

)
0.

95
19

(±
0.

01
72

)
0.

92
19

(±
0.

06
03

)
0.

69
41

(±
0.

16
95

)
0.

19
03

(±
0.

16
62

)

C
oR

X
w

/o
cr

os
s-

st
itc

h
In

te
rn

al
0.

00
91

(±
0.

00
08

)
0.

92
13

(±
0.

01
37

)
0.

96
15

(±
0.

01
37

)
0.

75
11

(±
0.

10
04

)
0.

03
09

(±
0.

02
10

)
9,

55
7,

11
0

E
xt

er
na

l
0.

02
39

(±
0.

00
50

)
0.

95
31

(±
0.

01
70

)
0.

93
31

(±
0.

06
10

)
0.

83
63

(±
0.

16
82

)
0.

14
79

(±
0.

12
2)

C
oR

X
w

ith
cr

os
s-

st
itc

h
In

te
rn

al
0.

00
85

(±
0.

00
07

)
0.

93
20

(±
0.

01
34

)
0.

96
53

(±
0.

01
13

)
0.

77
65

(±
0.

09
43

)
0.

02
49

(±
0.

01
66

)
9,

55
7,

13
8

E
xt

er
na

l
0.

02
32

(±
0.

00
53

)
0.

95
39

(±
0.

01
76

)
0.

93
60

(±
0.

05
94

)
0.

85
68

(±
0.

15
90

)
0.

10
16

(±
0.

07
58

)

A
bb

re
vi

at
io

n:
S

S
IM

,s
tr

uc
tu

ra
ls

im
ila

rit
y

in
de

x
m

ea
su

re
;L

N
C

C
,l

oc
al

no
rm

al
iz

ed
cr

os
s

co
rr

el
at

io
n.

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17129 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [21/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DEEP-LEARNING BASED SPECT/CT REGISTRATION 7

F IGURE 2 The SPECT/CT registration results and
corresponding deformation fields using various methods for a case
of internal validation in the coronal view are shown ((a) input images,
(b) elastix, (c) TransMorph, (d) CoRX-NET without the cross-stitch
layers, and (e) CoRX-NET with the cross-stitch layers). The input
images, with the 4-h image as the fixed image and the 24-, 48-, and
120-h images as the moving images, are displayed in (a).

F IGURE 3 The SPECT/CT registration results and
corresponding deformation fields using various methods for a case
of internal validation in the axial view are shown ((a) input images,
(b) elastix, (c) TransMorph, (d) CoRX-NET without the cross-stitch
layers, and (e) CoRX-NET with the cross-stitch layers). The input
images, with the 4-h image as the fixed image and the 24-, 48-, and
120-h images as the moving images, are displayed in (a).

in some regions such as the pelvic bone, highlighted
by red arrows in the 24-h CT image (Figure 2). Deep
learning-based methods, on the other hand, exhibited
superior CT registration, particularly in the specified
region. The red crosshairs in Figures 2 and 3 marked
the midsection of a metastatic liver tumor, visible in the
SPECT images.Elastix-registered images failed to align
accurately with the tumor, and tumor locations across
different SPECT scans registered using Elastix showed
inconsistencies.

In contrast, CoRX-NET showed notable improve-
ments in registration results, as indicated by crosshair
alignment on tumor regions, especially when cross-
stitch layers were employed.However,when cross-stitch
layers were not included,significant folding artifacts,and
mis-registration were observed in registered SPECT
images, as highlighted by yellow arrows (Figure 3).
These artifacts were notably suppressed by cross-stitch
layers, as suggested by the sharper appearance of
CoRX-NET’s deformation fields without them (Figure 2).
TransMorph, renowned for medical image registration,
exhibited acceptable CT registration but did not achieve
a similar level of performance in SPECT registration,
compared to CoRX-NET.

3.3 External validations

Figures 4 and 5 shows the registration results for an
external validation case (a 49-year-old male patient with
pancreatic NET and liver metastasis) in the coronal and
axial views, respectively. CT images acquired at 4- and
48-h post-injection had greater slice thickness com-
pared to those acquired at 24 h. The red crosshairs in
Figures 4 and 5 were placed on a tumor region,as in the
internal validation case. Distinct differences in CT reg-
istration results were not evident between Elastix and
other deep learning-based registration methods. How-
ever, significant mismatches in SPECT registration were
observed when Elastix was used, highlighted by red
arrows in Figures 4 and 5.In contrast,CoRX-Net demon-
strated superior registration results in terms of both the
shape and position of tumors.

Similar to the internal validation,CoRX-Net with cross-
stitch layers achieved the best registration among the
deep learning-based methods. In axial SPECT imaging
at 24 h post-injection,shape disparities arose with Trans-
Morph or cross-stitch-less CoRX-Net (yellow arrows in
Figure 5). Notably, CoRX-Net without cross-stitch layers
yielded folding artifacts in the 48-h post-injection SPECT
images (yellow arrows in Figure 4). The deformed grids
of TransMorph and cross-stitch-less CoRX-Net pre-
sented in Figure 4 exhibited under-regularized behavior
compared to CoRX-NET with cross-stitch layers.

In Figure 6, for an external validation case (a 54-year-
old female patient with rectal NET and liver metastasis),
a crosshair was placed on the liver metastasis, right
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8 DEEP-LEARNING BASED SPECT/CT REGISTRATION

F IGURE 4 The SPECT/CT registration results and
corresponding deformation fields using various methods for a case
of external validation in the coronal view are shown ((a) input
images, (b) elastix, (c) TransMorph, (d) CoRX-NET without the
cross-stitch layers, and (e) CoRX-NET with the cross-stitch layers).
The input images, with the 4-h image as the fixed image and the 24-
and 48-h as the moving images, are displayed in (a).

kidney, and thoracic spine metastasis to compare
SPECT registration accuracy. Profiles near the liver
metastasis in the fixed SPECT image and CoRX-NET-
registered image were nearly identical (blue arrows),
contrasting with Elastix. CoRX-NET aligned with the
fixed image’s activity distribution in the kidney and
bone metastasis (green and red arrows), while Elastix
deviated.

3.4 TIA estimation

Table 3 shows the TIAs for kidney and tumor regions,
along with their corresponding average errors and voxel-
wise RMSE using the external validation dataset with
4-h SPECT images as the fixed images. CoRX-NET
exhibited the smallest average error with organ-based
TIA for tumor regions, while TransMorph exhibited the
smallest error for kidneys. TIAs estimated using CoRX-
NET were higher than other methods, regardless of the
regions. However, smaller errors compared to organ-
based TIA do not necessarily imply accurate registration
or TIA estimations. It is more important that voxel-wise

F IGURE 5 The SPECT/CT registration results and
corresponding deformation fields using various methods for a case
of external validation in the axial view are shown ((a) input images,
(b) elastix, (c) TransMorph, (d) CoRX-NET without the cross-stitch
layers, and (e) CoRX-NET with the cross-stitch layers). The input
images, with the 4-h image as the fixed image and the 24- and 48-h
as the moving images, are displayed in (a).

RMSEs were significantly lower for both regions when
using CoRX-NET, compared to other methods.

Figure 7 shows voxel-wise TIA maps and correspond-
ing RMSE maps for an external validation case (a
54-year-old female patient with rectal NET and liver
metastasis) generated using Elastix and CoRX-NET
with the cross-stitch layers. The results for Trans-
Morph and CoRX-NET without the cross-stitch layers
are shown in Figure S1. A red crosshair was placed
on the edge of the liver tumor regions where high
uncertainty was expected. RMSE values were lower
when using CoRX-NET with the cross-stitch layers
not only near the red crosshair but also within the
spine.

4 DISCUSSION

In this study, we introduced a novel unsupervised
deep learning network designed for SPECT/CT regis-
tration, utilizing both CT and SPECT images as input.
Through a comprehensive ablation study, we demon-
strate that including cross-stitch layers significantly
improves network performance. Remarkably, the inte-
gration of cross-stitch layers required only an additional
28 network parameters. As shown in Figures 2–5, the
utilization of cross-stitch layers effectively suppressed
folding artifacts, improving the robustness of network
performance. This improvement was evident not only
in internal validation but also in external validation,
as summarized in Table 2. Despite the training set
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DEEP-LEARNING BASED SPECT/CT REGISTRATION 9

F IGURE 6 The vertical and horizontal line profiles of normalized activities in fixed and registered SPECT images acquired using Elastix
and CoRX-NET (with the cross-stitch layers) for an external validation case.

being composed exclusively of male patient data, it was
found that the performance differences among various
methods for the external dataset, as indicated in Table
S2, were independent of patients’ sex.

To comprehensively evaluate SPECT registration
performance, we conducted both quantitative and qual-
itative analyses. Quantitatively, we calculated SSIM and
LNCC between the fixed and deformed normalized
SPECT images. Given that SPECT images acquired
at different time points exhibit varying activity levels,
comparing SSIM without any normalization would be
inappropriate. While normalized SPECT images were
employed for SSIM estimation, it is insufficient to com-
pare registration performance, as regional uptake may
vary over time. Therefore, we also employed LNCC to
account for local context variations.

These quantitative analyses were conducted based
on two assumptions. First, during voxel-based dosime-
try after PRRT, the process of calculating TIA following
the registration of SPECT/CT implicitly assumes that
the registered images share the same 3D space.5,7

This means that, regardless of whether it’s SPECT
or CT, for registered images taken at different time
points, assuming that the tissue or radioactivity dis-
tribution in voxels at the same position in 3D space
is actually in the same 3D space. In the context of
CT images, this assumption holds true given the mini-
mal uncertainty associated with the images themselves.
However, for SPECT images, characterized by substan-
tial uncertainty, noise, partial volume effect, and inferior
spatial resolution compared to CT images, the validity
of this assumption becomes less clear.5,31 Neverthe-

less,owing to the inherent properties of SPECT images,
there exists a certain margin to assume similarity in
the radioactivity distribution between the two registered
SPECT images. Despite the limited spatial resolution of
SPECT images, which prevents the exact determina-
tion of the actual activity distribution, there is a margin
allowing us to assume that the trend of activity distribu-
tion between two registered SPECT images is similar.To
clarify, although the absolute voxel-wise activity remains
unknown, observing high activity in a specific area of
one SPECT image implies an expectation of similarly
elevated activity in the corresponding area of another
SPECT image at a different time point. As a result, we
assert that assuming localized correlation between the
two registered SPECT images is a reasonable propo-
sition. We hypothesized that such correlation could be
utilized in SPECT image registration and employed local
normalized cross-correlation in the network’s training
and evaluation.

Second, the need for visual verification was men-
tioned even after using SPECT/CT hybrid imaging for
registration (i.e., applying the deformation field obtained
from CT-CT registration to SPECT images).5 It was
considered that the visual verification of registration
could be evaluated by visual similarity which is quantita-
tively evaluated using SSIM in our study. Unfortunately,
SPECT images taken at different time points have differ-
ent radioactivity levels as mentioned earlier. Therefore,
SSIM between min-max normalized SPECT image pair
was utilized in network evaluation. However, the appli-
cation of this metric would be imperfect. Although it
would be a valid assumption if SPECT images taken
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10 DEEP-LEARNING BASED SPECT/CT REGISTRATION

TABLE 3 The comparison of TIA (± standard deviation) between organ-based approach and voxel-based approach with Elastix or
CoRX-Net.

Kidneys Tumors

Organ-based TIA (MBq∙h) 3.47 × 105 (±1.49 × 105) 2.15 × 105 (±3.22 × 105)

Elastix TIA
(MBq∙h)

4.07 × 105 (±1.33 × 105) 2.20 × 105 (±3.29 × 105)

Average error (%) 27.11 (±39.68) –13.22 (±23.56)

Voxel-wise RMSE (kBq∙h) 3.63 × 105

(±1.30 × 105)
1.76 × 105

(±1.97 × 105)

TransMorph TIA
(MBq∙h)

3.64 × 105 (±1.14 × 105) 1.34 × 105 (±1.17 × 105)

Average error (%) 12.63 (±28.16) –30.27 (±31.57)

Voxel-wise RMSE (kBq∙h) 4.60 × 105

(±1.71 × 105)
2.02 × 105

(±2.28 × 105)

CoRX w/o cross-stitch TIA
(MBq∙h)

4.29 × 105 (±1.30 × 105) 2.25 × 105 (±3.39 × 105)

Average error (%) 35.90 (±42.23) –10.83 (±36.61)

Voxel-wise RMSE (kBq∙h) 3.01 × 105

(±1.01 × 105)
1.23 × 105

(±1.58 × 105)

CoRX with cross-stitch TIA
(MBq∙h)

4.35 × 105 (±1.41 × 105) 2.28 × 105 (±3.59 × 105)

Average error (%) 39.15 (±47.46) –6.84 (±64.22)

Voxel-wise RMSE (kBq∙h) 2.66 × 105

(±8.14 × 104)
1.18 × 105

(±1.67 × 105)

Abbreviation: TIA, time-integrated activity.

at different time points exhibit similar radioactivity con-
centrations across the all organ and voxel levels, this is
often not the case in reality. Nevertheless, SSIM would
show higher values for well-registered pairs of nor-
malized SPECT images compared to poorly registered
ones.Fundamentally, considering the absence of estab-
lished criteria for quantifying the equivalence between
registered SPECT images with different radioactiv-
ity concentration, these assumptions and justifications
were introduced. Additionally, quantitative evaluation
becomes more challenging as there is no true label
for SPECT registration. Despite the limitations of the
assumptions and evidence provided, we would like to
emphasize that, given the task at hand, this type of
quantitative analysis was the best available approach
at the present time. Notably, CoRX-NET consistently
exhibited superior SPECT registration, regardless of the
evaluation metric.

Qualitatively,we examined activity profiles for an exter-
nal validation case (Figure 6). Although CoRX-NET
exhibited a profile similar to that of the fixed image,
the similarity in the profile alone does not guarantee
successful registration. However, at the very least, the
distribution along the boundaries of high uptake regions
should exhibit spatial similarity. This was the specific
aspect we aimed to validate through profile comparison.

In an external validation case, we observed severe
artifacts when using CoRX-NET with cross-stitch lay-

ers, as highlighted by red arrows in Figure S2. These
artifacts were a result of significant discrepancies in
radioactivity distributions between the fixed and mov-
ing SPECT images. Notably, activity was predominantly
concentrated in the kidneys and urinary bladder, with
minimal uptake observed in tumor regions in the initial
SPECT images. However, substantial tumor uptake was
observed in the 48-h SPECT images. When employ-
ing min-max normalization for this case, information
within the low uptake regions of the fixed SPECT image
was lost.Conversely, log-scaling normalization mitigated
information loss and consequently improved registra-
tion performance in this case. Therefore, the network’s
generalization capability extended to outlier data without
necessitating additional network training.

In this study, SPECT/CT registration through a neu-
ral network aimed to ensure that the overall radioactivity
distribution between normalized SPECT images was
similar as mentioned earlier. This process can enforce
that the shape and size of tumors remain constant in
SPECT images through all the time points, which may
cause error in dose estimation. However, physical tumor
size may not significantly reduce during the sequential
scans conducted through a week. To account for this
issue, upon comparing the activities within the kidneys
and tumor regions before and after registration,we have
confirmed negligible differences as shown in Figure S3
and Table 3.
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DEEP-LEARNING BASED SPECT/CT REGISTRATION 11

F IGURE 7 SPECT registration results, voxel-wise TIA and corresponding RMSE acquired using Elastix and CoRX-NET with the
cross-stitch layers. RMSE, root mean square errors; TIA, time-integrated activity.

As known earlier, in internal dosimetry after radioiso-
tope therapy, there are various sources of uncertainty
in dose estimation, including TIA calculation, VOI delin-
eation, and dose calculation methods.32–35 Notably, in
the context of dose assessment, it has been reported
that there exists an inherent uncertainty of approxi-
mately 20% associated with estimating TIA.36 Although
not quantitatively analyzed, the registration process
can also introduce uncertainty into the entire dose
assessment procedure.37 The accuracy of registra-
tion, as evidenced in this study, not only influences
subsequent segmentation but also contributes to the
uncertainty in voxel-wise TIA calculation.38 As empha-
sized by the society of nuclear medicine and molec-
ular imaging (SNMMI) Dosimetry Taskforce, in order
for dosimetry assessment to gain broader recogni-
tion as a routine therapeutic procedure, addressing
such uncertainties will be essential. From this perspec-
tive, this study has endeavored not only to enhance
the accuracy of dosimetry assessment but also to
contribute to the standardization of the dosimetry
framework, with the ultimate goal of making it more
widely applicable and reliable in clinical practice. Ulti-

mately, the optimization of treatment by adjustment of
injection dose would be achievable through accurate
dosimetry with reliable SPECT/CT registration. Further-
more, establishing the relationship between absorbed
dose and dose response through accurate dosime-
try will play an important role in increasing treatment
efficiency.

Furthermore, although not included in this study,
subsequent research could explore the application of
CoRX-NET for Lu-177 PSMA dosimetry as well. Addi-
tionally, in the context of performing pre-treatment
dosimetry for Y-90 radioembolization using Tc-99 m
SPECT/CT, registration between Tc-99 m SPECT/CT,
and Y-90 PET/CT may be required, and CoRX-NET
could facilitate this registration.39 Incorporating fine-
tuning techniques would serve to validate the general-
izability of CoRX-NET across diverse image datasets.
While the network’s robustness was assessed through
external validation, additional investigations, such as
those mentioned above, could further confirm its robust-
ness.

One of the limitations of CoRX-NET is its restric-
tion on input image size, which is limited by the GPU
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12 DEEP-LEARNING BASED SPECT/CT REGISTRATION

memory. Consequently, we had to resample SPET/CT
images to have 128 × 128 × 128 matrix size, which
necessitated additional preprocessing with the poten-
tial risk of losing anatomical information. However, the
similar approaches are also employed in conventional
iterative registration methods to address memory and
computation time issue. Furthermore, the final dose
maps generated through the SPECT/CT registration are
predominantly determined by the radioactivity distribu-
tion exhibited by the lower-resolution image, SPECT.

Another limitation of this study is that the image pairs
for network training is not entirely independent since
each SPECT/CT image was included several times to
increase the number of training datasets as mentioned.
This dependency would be a possible reason for lower
CT registration metrics for external validation (i.e. CT
L1 loss and SSIM). Nevertheless, CoRX-NET demon-
strated a superior SPECT registration metric compared
to the conventional Elastix in the external validation.
This superiority extended to the voxel-wise TIA calcula-
tion,where CoRX-NET exhibited the smallest voxel-wise
RMSE. In other words, for the SPECT/CT registration
task, robust results were obtained even for an exter-
nal dataset that was entirely independent of the training
dataset.

5 CONCLUSIONS

This study marked a significant advancement in achiev-
ing precise SPECT/CT registration through the applica-
tion of an unsupervised deep learning network. Notably,
this approach demonstrated its efficacy across both
the internal validation and external validation datasets,
surpassing the accuracy of conventional methods like
Elastix or TransMorph. This enhanced registration pro-
cess yielded the creation of TIA maps with reduced
uncertainties, which in turn indicates the potential for
more accurate dose assessments.
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